Suppression of STAT5b in pancreatic cancer cells leads to attenuated gemcitabine chemoresistance, adhesion and invasion
نویسندگان
چکیده
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, and there is an urgent need for new therapeutic strategies based on the molecular biology of PDAC. Signal transducers and activators of transcription 5 (STAT5) are known to be activated in a variety of malignancies and involved in tumor proliferation, apoptosis, and invasion, whereas the expression and biological role of STAT5b in PDAC are less clearly defined. In the present study, we examined the expression and role of STAT5b in human pancreatic cancer cell lines. Expressions of STAT5b mRNA and protein were detected in eight kinds of pancreatic cancer cells. Confocal microscopy and western blot analysis indicated that STAT5b is localized in both cytoplasm and nuclei. Immunoprecipitation analysis revealed tyrosine phosphorylation of STAT5b in pancreatic cancer cells. These results indicate that STAT5b in pancreatic cancer cells is constitutively activated. STAT5b shRNA clones in PANC-1 cells, which express relatively high levels of STAT5b, exhibited reduced chemoresistance against gemcitabine, adhesion and invasion compared to sham. On the other hand, AsPC-1 and BxPC3 cells, which express relatively low levels of STAT5b, exhibited reduced chemoresistance compared to PANC-1 cells. Moreover, STAT5b overexpression clones in AsPC-1 cells exhibited increased chemoresistance compared to sham. STAT5b shRNA clones in PANC-1 cells were more sensitive to the proapoptotic actions of gemcitabine, as evidenced by PARP and cleaved caspase-3 activation. Gemcitabine also significantly reduced Bcl-xL levels in the STAT5b shRNA-expressing cells. We also investigated the clinicopathological characteristics of STAT5b expression of PDAC. Although a significant correlation between STAT5b expression and overall survival rates was not observed, a significant correlation with main pancreatic duct invasion was observed. These findings suggest that STAT5b confers gemcitabine chemoresistance and promotes cell adherence and invasiveness in pancreatic cancer cells. Targeting STAT5b may lead to novel therapeutic strategies for PDAC.
منابع مشابه
BRG1 promotes chemoresistance of pancreatic cancer cells through crosstalking with Akt signalling.
Gemcitabine is a standard chemotherapeutic agent for locally advanced and metastatic pancreatic cancer. However, the chemoresistance of pancreatic cancer is the major barrier to efficient chemotherapy. Here, we reported that BRG1, a chromatin modulator, was exclusively overexpressed in human pancreatic ductal adenocarcinoma tissues. BRG1 knockdown inhibited PANC-1 and MIA PaCa-2 cell growth in ...
متن کاملGemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling
Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenot...
متن کاملA novel role for carcinoembryonic antigen-related cell adhesion molecule 6 as a determinant of gemcitabine chemoresistance in pancreatic adenocarcinoma cells.
Most patients with pancreatic adenocarcinoma present with surgically incurable disease. Gemcitabine, the principal agent used to treat such patients, has little impact on outcome. Overexpression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6, a feature of this malignancy, is associated with resistance to anoikis and increased metastasis. The purpose of this study was to d...
متن کاملReduced FBXW7 expression in pancreatic cancer correlates with poor prognosis and chemotherapeutic resistance via accumulation of MCL1
Pancreatic cancer is a highly malignant tumor type with poor outcomes, and elucidation of the mechanisms involved in cancer progression and therapeutic resistance is critical. FBXW7 is a key regulator of tumor malignant potential, and its substrate MCL1 regulates therapeutic resistance in human malignancies. Therefore, determination of the relevance of FBXW7 expression is critical for improving...
متن کاملMicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance.
Due to the poor prognosis of pancreatic cancer, novel diagnostic modalities for early diagnosis and new therapeutic strategy are urgently needed. Recently, microRNA-21 (miR-21) was reported to be strongly overexpressed in pancreatic cancer as well as in other solid cancers. We investigated the functional roles of miR-21, which have not been fully elucidated in pancreatic cancer. miR-21 expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2016